

Daigas Group Energy Transition 2030

March 2023 Osaka Gas Co., Ltd.

Background of formulating Energy Transition 2030

The Daigas Group announced **the Carbon Neutral Vision** in January 2021, **aiming for net zero by 2050.** To achieve the target, we are working on effective initiatives.

Japan's transition to a low-carbon society has gained momentum with the government's announcement in April 2021 of a 46% reduction in greenhouse gas emissions by 2030. Meanwhile, **energy security has become an urgent issue** for the country due to changing global economy and increasing energy market volatility.

Under these circumstances, the Daigas Group **strives to ensure the stability and security of the energy supply and achieve the carbon neutrality** of energy for a sustainable future.

Daigas Group
Carbon Neutral Vision

Purpose of Energy Transition 2030

We have formulated **Energy Transition 2030** to share with stakeholders the Daigas Group's strategy for achieving carbon neutrality by 2050, including:

Overall picture of our transition to low carbon and carbon neutral energy
 Our transition initiatives and solutions for a lower carbon society in 2030.

We continue working with stakeholders to create value for a sustainable future by taking on the challenge of resolving issues in the energy field.

Daigas

Carbon Neutral Vision	to become carbon neutral	
Daigas Group's approaches to decarbonization		2050
Energy Transition 2030	2030	

Contents

1. Overall picture of Daigas Group's energy transition

1-1	Daigas Group's energy transition	
	Daigas Group's energy transition 5	
1-2	1-2 Hydrogen carriers for thermal energy decarbonization	
	e-methane: key carbon neutral energy carrier 6	
	Hydrogen carrier utilization according to attributes 7	

1-3 Contribution to society-wide CO₂ emissions reduction

CO ₂ emissions reduction with natural gas utilization	8
Contribution to society-wide emissions reduction	9
Enhancement of avoided emissions recognition	10
Daigas Group's CO ₂ emissions reduction roadmap	11

2. Daigas Group's initiatives and solutions for a lower carbon society in 2030

Initiatives for e-methane practical application	
2030 target of 1% e-methane in gas grid	13
e-methane supply chain development in Japan	14
e-methane supply chain development overseas	15
Methanation technologies for producing e-methane	16
Initiatives in power business	
Carbon neutral initiatives in power business	17
Further initiatives for decarbonization	
CO ₂ value chain development	18
New decarbonization technology development	19
	2030 target of 1% e-methane in gas grid e-methane supply chain development in Japan e-methane supply chain development overseas Methanation technologies for producing e-methane Initiatives in power business Carbon neutral initiatives in power business

2-4 Daigas Group's solutions offered to customers	
Daigas Group's solutions: residential sector	20
Daigas Group's solutions: lifestyle in the new normal	21
Daigas Group's solutions: C&I sector	22
2-5 Daigas Group companies' roles	
Daigas Group companies' roles in energy transition	23
Reference: Renewable energy sources	
1. Biomass	24
2. Wind	25
3. Solar PV	26

Note: The target years 2030 and 2050 mean the fiscal years ending in March 2031 and March 2051 respectively.

1. Overall picture of Daigas Group's energy transition

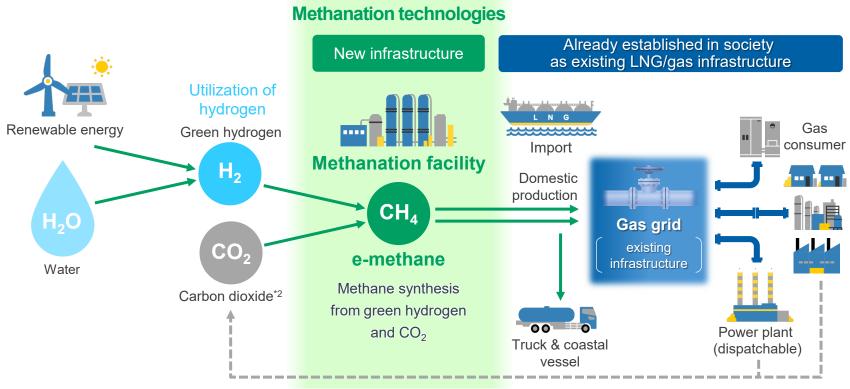
Energy Transition 2030

Daigas Group's energy transition

- Providing optimal energy carriers through suitable supply methods, following S+3E^{*1} and in accordance with customers' energy usage attributes
- Working on phased transition to minimize the social costs for energy conversion, especially in the thermal energy field

2023 203		30 2050	
DG's Energy conversion	Transition to a low carbon society	Carbon neutrality with innovation	
Shift to	Coal and oil Fuel conversion to natural gas	Transition to e-methane and biogas	
natural gas	Coal in coastal areas where ammonia can be used	Study on ammonia and biomass utilization	
Decarbonize	Natural gas advanced utilization/CN-LNG ^{*2} utilization	Transition to e-methane and biogas	
gaseous	New utilization near hydrogen power plants in coastal areas	Study on hydrogen utilization	
energy	New utilization near ammonia power plants in coastal areas	Study on ammonia utilization	
Decarbonize	Renewables (PV, wind, biomass, geothermal, etc.)	Gradual expansion	
power	Natural gas-fired power generation	Transition to e-methane and biomass	
sources	Natural gas-lifed power generation	Study on hydrogen utilization (mixed combustion→single combustion)	
CCUS	Hard-to-abate industries, etc.	Expansion of CCUS ^{*3} (direct CO ₂ reduction)	

*1 The Japanese government's basic energy policy, Safety + Energy security, Economic efficiency, and Environment


*2 Carbon Neutral-LNG, which is considered to produce no CO2 on a global basis when greenhouse gases emitted in the supply chain from natural gas production to combustion are offset by CO2 absorbed and reduced in a separate process from the value chain

*3 Carbon dioxide Capture, Utilization and Storage

e-methane: key carbon neutral energy carrier

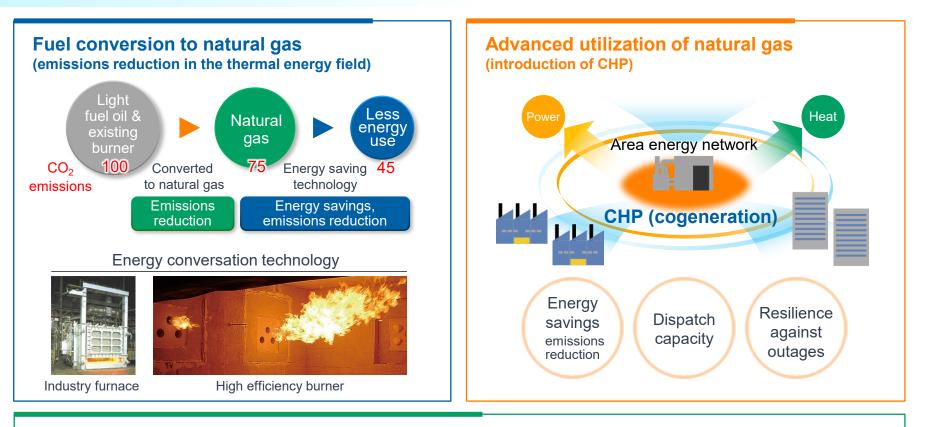
- e-methane is a carbon neutral hydrogen carrier^{*1} synthesized through methanation using CO₂ captured from emissions
- Working on phased transition to minimize the social costs for energy conversion, especially in the thermal energy field

Carbon recycling $(CCU^{*3}) =$ **No increase in atmospheric CO**₂

e-methane supply chain

- *1 Hydrogen compounds that achieve efficient storage, transport, and utilization of hydrogen, which cannot be stored and transported over long distances efficiently in its gaseous state
- *2 Biogenic CO₂ and possibly DAC(Direct Air Capture) might be utilized in the future.
- *3 Carbon dioxide Capture and Utilization

7


Hydrogen carrier utilization according to attributes

- Utilization of hydrogen carriers according to each carrier's energy attributes
- Energy conversion during transition according to carrier's supply stability and attributes

	✔ H ₂ Hydrogen (LH2)	NH ₃ Ammonia	CH ₄ e-methane
Energy properties	 Liquefaction temp.: -253 °C Toxicity: No Combustion rate: Fast (8 times faster than natural gas) Combustion calorific value: 12.8 MJ/m³ Minimum ignition energy: 0.01 mJ 	 Liquefaction temp.: -33 °C Toxicity: Yes Combustion rate: Slow (1/5 of natural gas) Combustion calorific value: 17.1MJ/m³ Minimum ignition energy: 14 mJ 	 Liquefaction temp.: -162 °C Toxicity: No Combustion rate: Same as natural gas Combustion calorific value: 39.9 MJ/m³ Minimum ignition energy: 0.3 mJ
Points to consider	 No emissions from combustion No compatibility with existing gas infrastructure/equipment → Heat per gas volume: 1/3 of methane High energy required for liquefaction, transport, and storage 	 No CO₂ emission from combustion Proven track record in industrial application No compatibility with existing gas infrastructure/equipment Safety issue due to toxicity in case of leakage 	 Compatibility with existing gas pipelines/equipment → easier to convert fuels from natural gas, lower social costs Composition mostly the same as natural gas CO₂ accounting rule needed for CCU
Usage	 Fuel to replace natural gas for thermal power generation General use near coastal areas (new hydrogen pipeline is needed for inland supply) 	 Fuel to replace coal for thermal power generation Industrial use near coastal areas (new ammonia pipelines are needed for inland supply) 	 Fuel for existing gas users Utilization in urban and coastal areas Fuel for existing gas-fired power plants Fuel for ships

CO₂ emissions reduction with natural gas utilization

- Reducing emissions with energy-saving technologies (e.g., CHP) besides fuel conversion
- Saving energy and enhancing energy resilience with CHP utilizing waste heat
- Seamless transition by using natural gas/e-methane in existing equipment as is

Seamless transition from natural gas to e-methane

e-methane use in natural gas infrastructure/equipment fit for fuel conversion & natural gas advanced utilization

<u>Seamless transition to **net zero emissions**</u> with no burden on customers

Contribution to society-wide emissions reduction

 Contributing to society-wide emissions reduction by supplying natural gas, converting fuels from coal/oil to natural gas, and introducing CHP units and high-efficiency gas appliances

Fuel conversion to natural gas from other fuels

- Converting from oil/coal to natural gas/LNG to significantly reduce emissions
- Converting fuels to natural gas where gas infrastructure has not yet been developed in Japan and Asia

Daio Paper Corp. Mishima Plant

Converting from oil (lime kiln) -22,000 t/year

Asahi Kasei Corp. Nobeoka area

Converting from coal (thermal power plant) -160,000 t/year

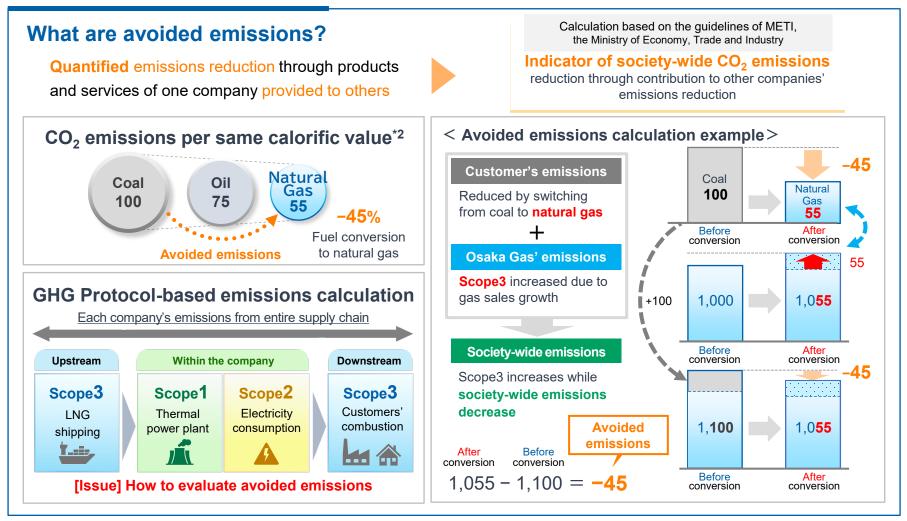
Toyobo Co., Ltd. Iwakuni Office

Converting from coal (thermal power plant) -80,000 t/year

Promoting wider use of CHP units

- Saving energy through waste heat utilization and supplying power in power outages as a BCP^{*1} measure
- Cumulative installed capacity: ~1.5 GW (equivalent to ~5% of the electricity demand in the Kansai area)

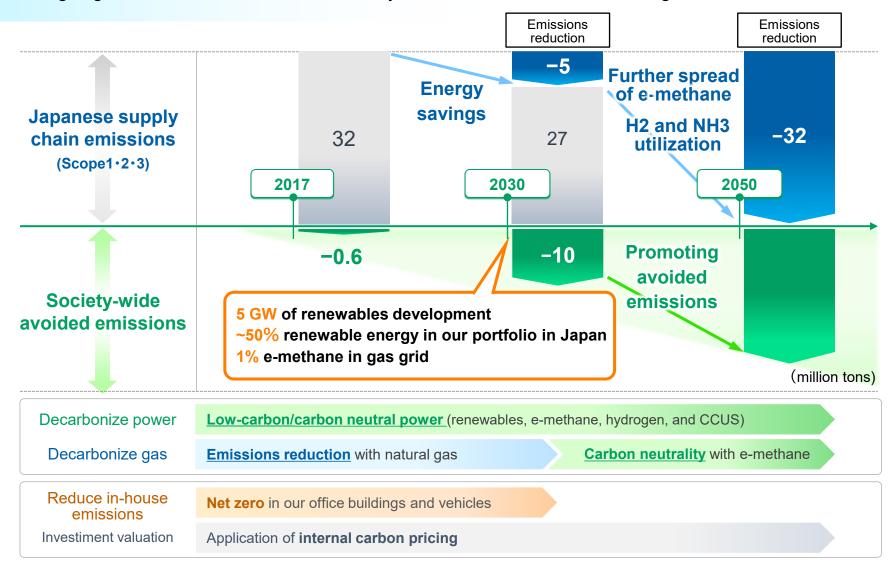
Promoting wider use of high efficiency gas appliances


- ENEFARM: ~170,000^{*2} units (~310,000 tons of annual emissions reduction)
- Eco-Jozu: ~1.07 million units (~260,000 tons of annual emissions reduction)

Enhancement of avoided emissions recognition

- Aiming to enhance the recognition of avoided emissions as an indicator of the contribution to society-wide CO₂ emissions reduction
- GHG Protocol^{*1}-based calculation does not cover avoided emissions

*1 International standard for calculating and reporting GHG missions


*2 Prepared based on the Ordinance Concerning Calculation of GHG Emissions from Business Activities of Specified Emitters issued by METI and the Ministry of the Environment

 $^{-1}$ $^{1-2}$ $^{1-3}$ Contribution to society-wide CO₂ emissions reduction

Daigas Group's CO₂ emissions reduction roadmap

 2030 targets: 5 mil. tons of CO₂ emissions reduction in Japan through 1% e-methane injection into the gas grid, etc., and 10 mil. tons of society-wide avoided emissions through business activities

2. Daigas Group's initiatives and solutions for a lower carbon society in 2030

Energy Transition 2030

Daiga

2030 target of 1% e-methane in gas grid

- e-methane: selected as next-generation thermal energy industry* with four value propositions
- 2030 target: 1% e-methane in the gas grid to expand e-methane's practical application

* One of 14 priority fields of the Green Growth Strategy*1

Value propositions of e-methane

Value proposition 1 Decarbonized heat demand	Decarbonizing heat demand, which accounts for 60% of energy, including high-temperature heat that cannot be generated by electricity	
Value proposition 2 Lower social costs	Significantly reducing social costs by using the existing gas infrastructure and equipment without modification	Daigas Group 2030 target
Value proposition 3 Enhanced energy security	Mitigating geopolitical risks through diversified sources of e-methane produced in various locations in Japan and overseas	1% e-methane in the gas grid
Value proposition 4 Carbon neutral Asia	Exporting competitive Japanese industries and contributing to the environment conservation and economic growth in Asia and Japan	(~60 million m³/year*²)


Next-generation thermal energy industry One of the Green Growth Strategy's 14 priority fields Selected Projects eligible for the Green Innovation Fund support

*1 A compilation of policies and action plans for the industrial sectors with growth potential in order to create a virtuous circle between the economy and the environment to achieve carbon neutrality by 2050,

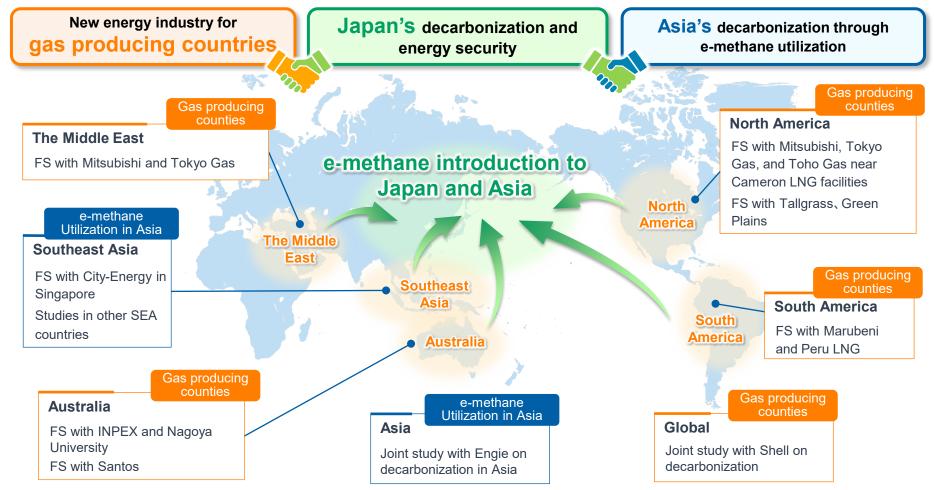
*2 Based on gas sales volume in FY2020

e-methane supply chain development in Japan

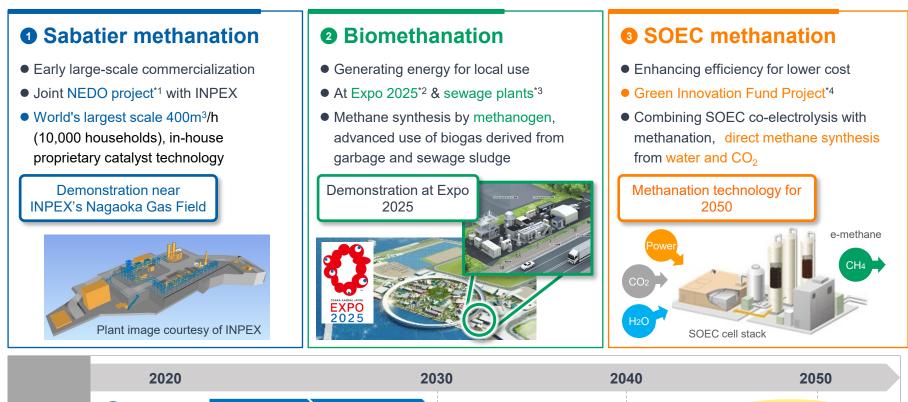
- Pursing methanation technology development, site analysis for e-methane production, and procurement of renewable energy, hydrogen, and CO₂ to achieve e-methane introduction in 2030
- Development of wind, solar, and other renewables, utilization of hydrogen as fuel for gas-fired power plants, and verification of methanation technologies with CO₂ capture and utilization

* Solid Oxide Electrolysis Cell

on ²⁻² power business ²⁻


on 2-4 offered to cus

ustomers 2-5 Com


e-methane supply chain development overseas

- Conducting feasibility studies and basic designs with domestic and overseas operators to establish supply chains in Japan and overseas for e-methane practical application in Japan starting in 2030
- Identifying suitable e-methane production location among sites around the world, where existing LNG facilities are available, for stable procurement and wide use of e-methane in Japan and Asia

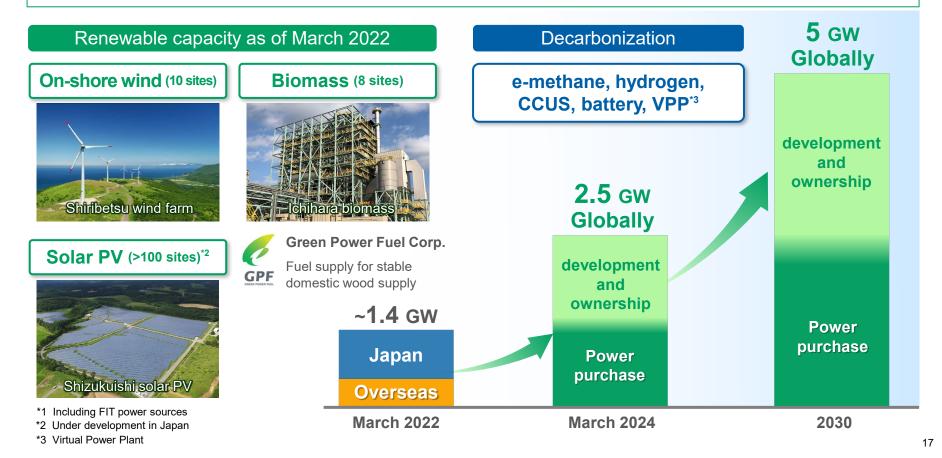
Methanation technologies for producing e-methane

- Scaling up **Sabatier methanation**, a conventional technology, and commercializing **biomethanation**, an innovative technology for producing energy for local use, to introduce e-methane by 2030
- Establishing SOEC methanation, a highly efficient next-generation technology, for 2050

*1 Development of CO₂ Utilization Technology for Gaseous Fuels, *2 Ministry of the Environment-funded FY2022 Demonstration Project,

*3 Ministry of Land, Infrastructure, Transport and Tourism's FY2022 Sewerage Application Research,

*4 SOEC Methanation Technology Innovation Project under the Innovative Technology Development for Synthetic Methane Production

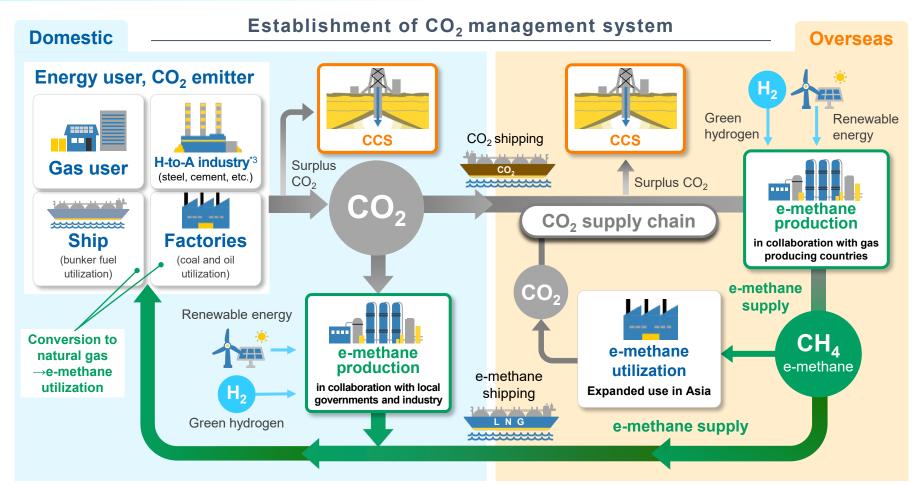

Carbon neutral initiatives in power business

Initiatives in power business

• Aiming for **5GW** of renewable energy development contribution by developing various types of renewables with partners across Japan while **decarbonizing thermal power sources**

Renewable energy-related targets for 2030^{*1}

- 1. 5GW of renewables development contribution on a global basis
- 2. ~50% renewable energy in our power portfolio in Japan


offered to customers

2-5 Daigas Group companies' roles

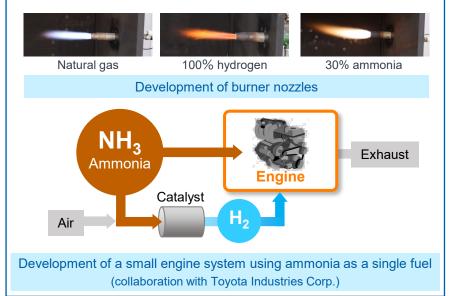
CO₂ value chain development

- Producing and supplying e-methane, which doesn't require new infrastructure development and gas equipment replacement, reusing emitted CO₂ (CCU^{*1})
- Establishing CO₂ supply chains and injecting and storing surplus CO₂ deep underground using CCS^{*2}
- Developing a CO₂ management system to monitor and control CO₂ generated in above processes

*1 Carbon dioxide Capture and Utilization

2-4 offered to customers

-5 Daigas Group companies' roles


Daigas

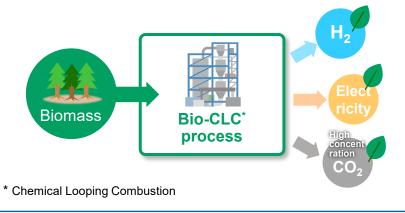
New decarbonization technology development

- New technologies that contributes to emissions reduction, based on our proprietary technologies
- Accelerating R&D, communicating information, and promoting alliances at new R&D center

Hydrogen and ammonia combustion

Technologies for stable combustion

Radiative cooling materials


Developing materials that reduce indoor temperature lower than outside without using energy

Carbon neutral hydrogen production (chemical looping combustion)

Technology for producing hydrogen, power, and high concentration CO_2 simultaneously by reacting biomass fuel, water, and air through iron oxide circulation

New R&D center

Full operation scheduled for 2025 to accelerate R&D, communicate information, and promote alliance

Daigas Group's solutions: residential sector

Daigas Group's solutions offered to customers

 Offering energy solutions for customers' comfortable living in addition to 3E, Environment, Energy security, and Economic efficiency

ENE

COJ3-7

大阪ガスの電気

Environment

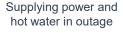
[1] High-efficiency water heaters

- Ene-Farm: Fuel cell unit High-end energy-saving model, ICEF^{*1} 2020 world's best innovation
- Eco-Jozu: Water heater Fit for limited installation space

[2] Promotion of renewable power

- Solar PV: Home carbon-free power generation
- Renewable power supply: Style Plan E-ZERO

[3] No wasted power generated at home


• Utilization of storage batteries:

Eliminating a waste of power generated at home, combined with Ene-Farm and solar PV

> Combination of fuel cells, batteries, and solar PV for reduction of 90% power purchase and 80% emissions

Energy security (resilience)

- ENE FARM stand-alone in outage
- 3-battery system to supply power from solar PV, battery, Ene-Farm
- Demand response for stable power supply in power shortage

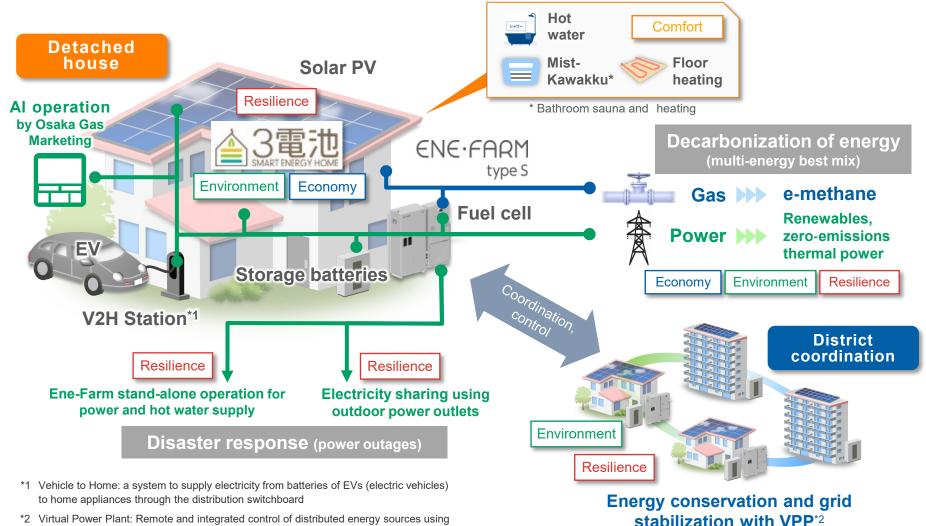
Economic efficiency

 Solar PV: Reducing power purchase and selling surplus power

• Sumai-Roof, Sumai-Roof Plus: free-ofcharge solar PV installation services

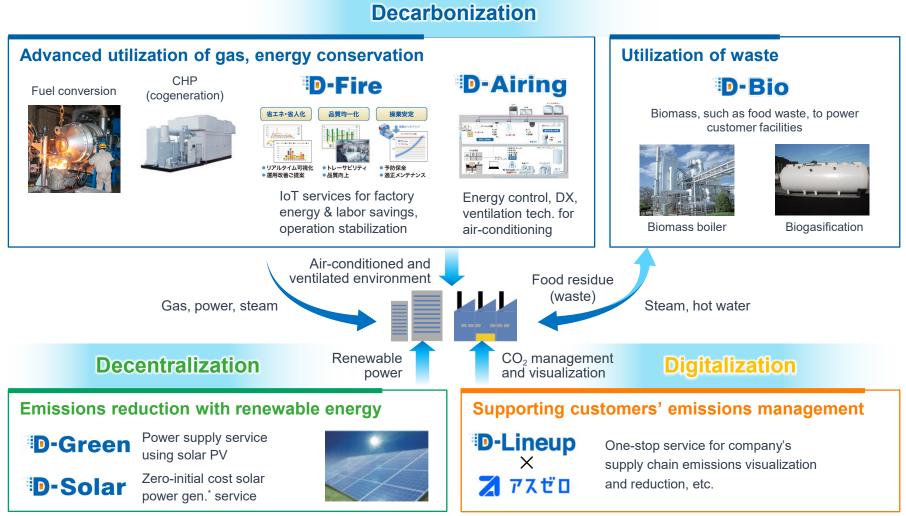
Comfortable living

- Stable hot water supply with Ene-Farm, Eco-Jozu, and other water heaters
- Gas-fired hot-water floor heating



Daigas Group's solutions: lifestyle in the new normal

Ensuring stable district energy supply and supporting customers' lifestyles with high-level 3E +
 Comfortable living in the new normal with optimal energy systems and advanced energy management


IoT-based technology for supply-demand balance of electricity

companies' role

Daigas

Daigas Group's solutions: C&I sector

 Providing solutions to various business management issues, tailored to each customer's needs, with 3D: Decarbonization, Decentralization, and Digitalization

2-1 2-2 2-3 2-4 2-5 Daigas Group companies' roles

Daigas Group companies' roles in energy transition

• Taking the lead in energy transition and leveraging the Group's strengths to contribute to achieving a carbon neutral society through energy supply

Osaka Gas Network Co., Ltd.

Operating and maintaining gas pipelines

Daigas Energy

Daigas Energy Co., Ltd.

Providing carbon neutral energy

and services to C&I customers

SAKA GAS

Osaka Gas Co., Ltd.

Introducing carbon neutral energy, developing and promoting e-methane technologies

Daigas G&P Solution

Daigas Gas and Power Solution Co., Ltd.

Operating and maintaining LNG receiving terminals, renewable power plants, and gas-fired power plants

SOSAKA GAS MARKETING

Osaka Gas Marketing Co., Ltd.

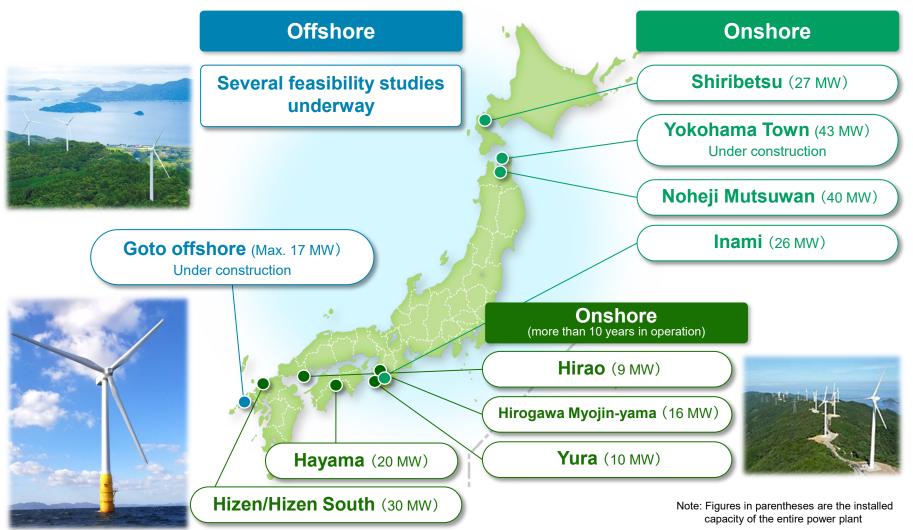
Providing carbon neutral energy and services to residential customers

Osaka Gas Singapore Osaka Gas Australia Osaka Gas UK Osaka Gas USA

Building carbon neutral energy supply chains overseas

[Reference] Renewables 1. Biomass

- Biomass power capacity development in Japan through early participation ⇒ 450 MW (8 sites)
- Green Power Fuel Co., Ltd. for long-term, stable supply of local biofuel for local use in Japan

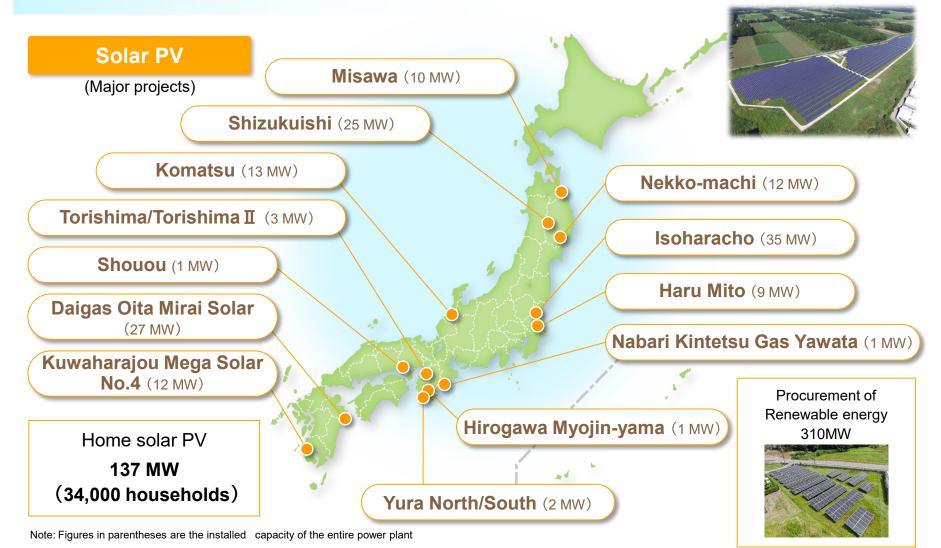

Note: Figures in parentheses are the installed capacity of the entire power plant.

Daigas

[Reference] Renewables 2. Wind

- Wind power capacity development onshore and offshore through early participation
 - \Rightarrow onshore: 220MW (10 sites^{*}),

offshore: under construction off the coast of Goto City, Nagasaki Prefecture



26

[Reference] Renewables 3. Solar PV

- Solar PV businesses: Large- and medium-scale development, small-scale services
- Procuring ~310 MW of solar PV at more than 100 sites nationwide

